New research being led by Dr. Shan-Liu Lu shows that the recently emerged BA.2.86 omicron subvariant of the virus that causes COVID-19 can be neutralized by bivalent mRNA vaccine-induced antibodies in the blood, which explains why this variant did not cause a widespread surge as previously feared.
However, the study in cell cultures showed this SARS-CoV-2 variant can infect human cells that line the lower lung and engage in virus-host cell membrane fusion more efficiently, two features linked to severe disease symptoms.
“We found that, surprisingly, despite all those 60 mutations combined together, BA.2.86 is not as immune-evasive as the XBB.1.5 variant, which until recently had been dominating the pandemic for months. That’s good news,” said Dr. Shan-Lu Liu, professor, Department of Veterinary Biosciences and co-director of the IDI Viruses and Emerging Pathogens thematic program.
“But BA.2.86 appears to have increased infectivity of human lung epithelial cells compared to all omicron variants, so that’s a little worrisome. And, consistent with infectivity, it also has increased fusion activity with human lung epithelial cells,” said Liu, also a professor in the Department of Microbial Infection and Immunity. “That raises a potential concern about whether or not this virus is more pathogenic compared to recent omicron variants.”